High-throughput transcriptome sequencing of the cold seep mussel Bathymodiolus platifrons
نویسندگان
چکیده
Bathymodiolid mussels dominate hydrothermal vents, cold methane/sulfide-hydrocarbon seeps, and other sites of organic enrichment. Here, we aimed to explore the innate immune system and detoxification mechanism of the deep sea mussel Bathymodiolus platifrons collected from a methane seep in the South China Sea. We sequenced the transcriptome of the mussels' gill, foot and mantle tissues and generated a transcriptomic database containing 96,683 transcript sequences. Based on GO and KEGG annotations, we reported transcripts that were related to the innate immune system, heavy metal detoxification and sulfide metabolic genes. Our in-depth analysis on the isoforms of peptidoglycan recognition protein (PGRP) that have different cellular location and potentially differential selectivity towards peptidoglycan (PGN) from gram-positive and gram-negative bacteria were differentially expressed in different tissues. We also reported a potentially novel form of metallothionein and the production of phytochelatin in B. platifrons, which has not been reported in any of its coastal relative Mytilus mussel species. Overall, the present study provided new insights into heavy metal and sulfide metabolism in B. platifrons and can be served as the basis for future molecular studies on host-symbiont interactions in cold seep mussels.
منابع مشابه
Comparative population structure of two dominant species, Shinkaia crosnieri (Munidopsidae: Shinkaia) and Bathymodiolus platifrons (Mytilidae: Bathymodiolus), inhabiting both deep‐sea vent and cold seep inferred from mitochondrial multi‐genes
Deep-sea hydrothermal vents and cold seeps, limited environments without sunlight, are two types of extreme habitat for marine organisms. The differences between vents and cold seeps may facilitate genetic isolation and produce population heterogeneity. However, information on such chemosynthetic fauna taxa is rare, especially regarding the population diversity of species inhabiting both vents ...
متن کاملGenomic Evidence that Methanotrophic Endosymbionts Likely Provide Deep-Sea Bathymodiolus Mussels with a Sterol Intermediate in Cholesterol Biosynthesis
Sterols are key cyclic triterpenoid lipid components of eukaryotic cellular membranes, which are synthesized through complex multi-enzyme pathways. Similar to most animals, Bathymodiolus mussels, which inhabit deep-sea chemosynthetic ecosystems and harbor methanotrophic and/or thiotrophic bacterial endosymbionts, possess cholesterol as their main sterol. Based on the stable carbon isotope analy...
متن کاملDual symbiosis in a Bathymodiolus sp. mussel from a methane seep on the Gabon continental margin (Southeast Atlantic): 16S rRNA phylogeny and distribution of the symbionts in gills.
Deep-sea mussels of the genus Bathymodiolus (Bivalvia: Mytilidae) harbor symbiotic bacteria in their gills and are among the dominant invertebrate species at cold seeps and hydrothermal vents. An undescribed Bathymodiolus species was collected at a depth of 3,150 m in a newly discovered cold seep area on the southeast Atlantic margin, close to the Zaire channel. Transmission electron microscopy...
متن کاملMolecular identification of methane monooxygenase and quantitative analysis of methanotrophic endosymbionts under laboratory maintenance in Bathymodiolus platifrons from the South China Sea
Deep-sea mussels of the genus Bathymodiolus are numerically dominant macrofauna in many cold seep and hydrothermal vent ecosystems worldwide, and they depend on organic carbon produced by symbionts present in the epithelial cells of the gills. Although Bathymodiolus platifrons represents typical methanotrophic endosymbiosis, our understanding of molecular mechanisms of methane oxidization and c...
متن کاملThe Transcriptome of Bathymodiolus azoricus Gill Reveals Expression of Genes from Endosymbionts and Free-Living Deep-Sea Bacteria
Deep-sea environments are largely unexplored habitats where a surprising number of species may be found in large communities, thriving regardless of the darkness, extreme cold, and high pressure. Their unique geochemical features result in reducing environments rich in methane and sulfides, sustaining complex chemosynthetic ecosystems that represent one of the most surprising findings in oceans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015